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SNSPD Device Concept

• Detection mechanism in SNSPDs is still an area of lively ongoing research

• Improved understanding of SNSPD device physics is essential to identifying fundamental 

limits of detector performance and engineering improved devices
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Overview of JPL SNSPD Development

WSi IR Arrays for Optical Communication

MoSi Ultraviolet SNSPDsHigh Operating Temperature SNSPDs

Ultra-high Timing Resolution

• 64 pixel arrays for DSOC ground terminal

• 64 pixel imaging arrays with row-column readout 

• 12 pixel arrays for secondary LLCD ground terminal

• Fiber-coupled arrays for QKD

• Feasibility studies for future ISS teleportation concept

• UV SNSPDs for trapped ion quantum computing

• 80% efficiency at 370 and 315nm at 4.2 K

• Single photon sensitivity at 245nm

• Close collaboration with NIST, Duke, Sandia

• MgB2 SNSPDs single photon sensitive at 17 K

• Considerable future development necessary

• 3.2 ps FWHM jitter in 

specialized NbN device 

• 4.9 ps at 1550 nm

• 7.1 ps using WSi

• Close collaboration with 

MIT and NIST Boulder

• Techniques applied to 

large-area array yielded 

25 ps FWHM
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DSOC Tech Demo Mission

Beacon & Uplink

1030 nm

292 kb/s 

@ 0.4 AU

1550 nm

Deep Space

Network

(DSN )

TBD

MOC

Optical Comm Ops Ctr.

JPL, Pasadena, CA

Ground Laser Transmitter (GLT)

Table Mtn., CA

5kW, 1m-dia. Telescope

Ground Laser  Receiver (GLR)

Palomar Mtn., CA

5m-dia. Hale Telescope

Spacecraft 

Flight Laser 

Transceiver

(FLT)

4W, 22 cm dia.

5

Performance using 4W average laser power w/22 cm 

flight transceiver to 5m ground telescope
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DSOC Project Overview

• Phase B of NASA Technology Demonstration Mission

• JPL flight terminal planned to launch on Psyche mission in 2022

• Projected downlink data rates from 200 kbps - 265 Mbps

• PPM 16 – 128, 500 ps – 8 ns slot widths, 4 slot intersymbol guard time

• Using a 320-µm 64-pixel WSi SNSPD array for the ground receiver

Pre-Decisional Information - For Planning and Discussion Purposes Only
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WSi SNSPD Architecture

• Photosensitive nanowire element is 

embedded in a vertical quarter-wave cavity

• Similar architecture developed by JPL and 

NIST in 2012 for single-pixel SNSPDs with 

93% system detection efficiency

• Amorphous material allows scaling to      

64-pixel arrays with high yield
Marsili et al, Nature Photonics 7, 210 (2013)

System detection efficiency for single pixel device
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64-Pixel SNSPD Array for DSOC

• 64-pixel WSi SNSPD array embedded in optical cavity optimized for 1550 nm

• 320-µm dia. free-space coupled active area, 4 quadrants, 16 co-wound wires per quadrant

• 13.3% nanowire fill factor: 4.5 x 160 nm wires on a 1.2 µm pitch

• Two-layer AR coating to enhance efficiency at low fill factor: 75% system detection efficiency

• 62 out of 64 measured nanowires show bias plateau

• Full 64-channel readout system and 64-channel time-to-digital converter

CAD Design of SNSPD focal plane array CAD Design showing one of 16 

individual sensor elements per 

quadrant

Optical microscope image of SNSPD 

array

320 µm
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Free Space Coupling

• Efficient coupling to large 

apertures requires free space 

coupling with cryogenic lens

• 300 K BK7 vacuum window

• 40 K, 4 K BK7 filters to block 

thermal background

• Engineering tradeoff between 

efficiency and false counts

• Experimenting with cryogenic 

spectral and spatial filters

• Must consider finite numerical 

aperture of detector 
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SNSPD Array Readout Architecture

• Direct readout of 64 channels into an FPGA

• Brass flex circuits from < 1 – 40 K

• DC-coupled cryogenic amplifiers

• Copper flex circuits from 40 - 300 K

• Room temperature amplifiers and comparators

• FPGA-based time tagger

• Set up SNSPD optical communication testbed with flight-like transmit emulator

SNSPD (1K)

Cryoamp (40K)

Bias

Cryostat

A

D

Computer

TDC PC

LNA (300 K)

Software
Analog

Pulses

Asynchronous

LVDS
Time

Tags

Programmable

Comparator

16-channel brass RF flex circuit
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Time to Digital Converter Development

• Recently worked with outside consultant to develop high-rate 

64-channel streaming time tagger

• Asynchronous time tagging across 64 independent channels

• < 30 ps single-shot timing jitter

• Demonstrated streaming 860 Mtps over PCIe

• Demonstrated streaming to memory, FPGA, SSD

• Each channel has integrated comparator front end

Comparator  
TDC

PCIe Bus

SSD
VCU-118

FPGA
DDR
RAM

Streaming 64-channel time-to-digital converter
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Efficiency Measurements

• 75% efficiency in TE polarization at 1550 nm, 

66% in TM polarization

• System detection efficiency including coupling 

losses through cryostat window, 40K and 4K 

IR filters

• 62 out of 64 nanowires show bias plateau

System detection efficiency across entire array

Photon count rate vs bias showing plateau on 62 nanowires
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Efficiency Measurements

• Cavity is well centered near 1550 nm

• Efficiency matches RCWA simulation assuming 93% total transmission (97.6% per element)

93% Window Transmission

Wavelength dependence of system detection efficiency in both polarizations
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Maximum Count Rate

• MCR measured with beam centered on a single quadrant due to count rate limitations in TDC

• 120 – 300 Mcps 3dB point per quadrant

• Scales to 465 – 1160 Mcps across 62 pixels

• Present total counting rate is limited to 860 Mcps by time tagging electronics

Maximum count rate measured for one 16-channel quadrant Interarrival time histogram showing 28 ns dead time, no afterpulsing
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Device Timing Jitter

• Representative individual pixel timing jitter measured using mode-locked laser and oscilloscope

• Instrument Response Function fits exponentially modified Gaussian

• 125 – 79 ps FWHM

• Additional ~30 ps jitter added by TDC is negligible

Timing jitter for one pixel of 64-pixel array Dependence of jitter on bias current
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False Count Rate

• 100 – 550 kcps false count rate across entire array, depending on bias point

• False counts are limited by blackbody IR loading from room-temperature optical system

• False counts in any individual application depend on etendue of optical system

• Blanked false counts are ~ 1 cps across array

• Bias dependence arises from changing mid-IR cutoff: 2.6 - 4.2 µm across plateau

• Cryogenic filters at 4K and 40K shields are used to reduce the mid-IR blackbody loading

False counts across entire array under two different filter configurations System detection efficiency as a function of bias



17

Jet Propulsion Laboratory
California Institute of Technology

Mid-IR Response of WSi SNSPDs

Mid-IR response of 100 nm WSi SNSPD @ 120 mK

Courtesy M. Stevens and F. Marsili, NIST

• High-efficiency SNSPDs can be engineered throughout the mid-IR

• WSi SNSPD shows bias plateau to 4.2 µm – stack can be engineered for high efficiency

• Single photon sensitivity recently demonstrated at 9.9 µm at JPL using cryogenic QCL

Illustration of quarter-wave optical stack concept
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64 Pixel “Row-Column” Arrays

• 64 pixel (8 x 8) sparse WSi SNSPD array 

for fast time-correlated imaging

• Row-Column readout strategy allows 64 

pixels to be read out using 16 lines

• Collaboration between JPL and NIST

• Kilopixel Row-Column arrays are “low-

hanging fruit” with 64-channel readout

8x8 Array at 1550 nm Operating Concept
Allman et al, APL (2015)
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Multiplexing Strategies for SNSPDs

Frequency Domain Row-Column

Position Sensitive Nanowire Thermally Coupled Imager

• Similar trade space to MKIDs • NxN array read out with 2N readout lines
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Ultra-high time resolution in SNSPDs

Dependence of timing jitter on photon energy

• Time resolution of SNSPD reduced 

from ~15ps to 3 – 5 ps FWHM

• Specialized device fabricated at MIT 

and tested at JPL

• Ultra-low-noise amplifier was used 

with high switching current SNSPD

to maximize SNR

• Same setup with differential version 

of DSOC array yields 25 ps jitter

• Jitter depends on energy for the first 

time – provides laboratory for 

probing device physics

Specialized low-jitter NbN SNSPD
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7ps Jitter with WSi

• Device fabricated at MIT with JPL WSi

• Taper matches impedance to 50Ω to 

improve SNR

• No amplifier required! ~1 mV signal
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Ultraviolet SNSPDs

• Fiber-coupled MoSi UV SNSPDs for applications in ion trap quantum computing

• 80% Efficiency at 370 and 315 nm, single photon sensitivity at 245 nm

• DBR mirrors to enhance absorption

• 4.2 K operating temperature

• mHz dark count rates when coupled to optics, < 7e-5 cps intrinsic dark count rates
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Efficiency and Dark Counts at 370nm

4.0 K

0.8 K
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Integration with Ion Trap Chips

• Hybrid integration between ion trap 

chips and free-space UV SNSPDS

• Collaborative effort between JPL, 

NIST, Sandia, and Duke University
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On-Chip Integrated SNSPDs

• WSi SNSPDs coupled to SiN waveguide photonics platform

• Integration with low-loss broadband optical couplers (Collaboration w/ Painter Group, Caltech) 

• Integration with on-chip ring resonators or echelle grating to form channelizing spectrometer or 

DWDM receiver for QKD

• Can realize a robust, on-chip cryogenic spectrometer, particularly in the mid-IR

• Promising preliminary results
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On-Chip Integrated SNSPDs
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On-Chip Integrated SNSPDs
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Conclusions

• SNSPDs are the highest performing detectors available for time correlated single photon counting

• They are enabling the first true demonstration of optical communication from deep space

• Progress in performance has been extremely rapid

• Technology is very new, with many opportunities for new innovation

• Many open directions for exploring new applications and new device concepts 

64-pixel SNSPD array mounted 

in chip carrier
Optical microscope image of array


